Fluoride effects on bone formation and mineralization are influenced by genetics.
نویسندگان
چکیده
INTRODUCTION A variation in bone response to fluoride (F(-)) exposure has been attributed to genetic factors. Increasing fluoride doses (0 ppm, 25 ppm, 50 ppm, 100 ppm) for three inbred mouse strains with different susceptibilities to developing dental enamel fluorosis (A/J, a "susceptible" strain; SWR/J, an "intermediate" strain; 129P3/J, a "resistant" strain) had different effects on their cortical and trabecular bone mechanical properties. In this paper, the structural and material properties of the bone were evaluated to explain the previously observed changes in mechanical properties. MATERIALS AND METHODS This study assessed the effect of increasing fluoride doses on the bone formation, microarchitecture, mineralization and microhardness of the A/J, SWR/J and 129P3/J mouse strains. Bone microarchitecture was quantified with microcomputed tomography and strut analysis. Bone formation was evaluated by static histomorphometry. Bone mineralization was quantified with backscattered electron (BSE) imaging and powder X-ray diffraction. Microhardness measurements were taken from the vertebral bodies (cortical and trabecular bones) and the cortex of the distal femur. RESULTS Fluoride treatment had no significant effect on bone microarchitecture for any of the strains. All three strains demonstrated a significant increase in osteoid formation at the largest fluoride dose. Vertebral body trabecular bone BSE imaging revealed significantly decreased mineralization heterogeneity in the SWR/J strain at 50 ppm and 100 ppm F(-). The trabecular and cortical bone mineralization profiles showed a non-significant shift towards higher mineralization with increasing F(-) dose in the three strains. Powder X-ray diffraction showed significantly smaller crystals for the 129P3/J strain, and increased crystal width with increasing F(-) dose for all strains. There was no effect of F(-) on trabecular and cortical bone microhardness. CONCLUSION Fluoride treatment had no significant effect on bone microarchitecture in these three strains. The increased osteoid formation and decreased mineralization heterogeneity support the theory that F(-) delays mineralization of new bone. The increasing crystal width with increasing F(-) dose confirms earlier results and correlates with most of the decreased mechanical properties. An increase in bone F(-) may affect the mineral-organic interfacial bonding and/or bone matrix proteins, interfering with bone crystal growth inhibition on the crystallite faces as well as bonding between the mineral and organic interface. The smaller bone crystallites of the 129P3/J (resistant) strain may indicate a stronger organic/inorganic interface, reducing crystallite growth rate and increasing interfacial mechanical strength.
منابع مشابه
Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro.
Bioactive glasses (BG) are suitable for bone regeneration applications as they bond with bone and can be tailored to release therapeutic ions. Fluoride, which is widely recognized to prevent dental caries, is efficacious in promoting bone formation and preventing osteoporosis-related fractures when administered at appropriate doses. To take advantage of these properties, we created BG incorpora...
متن کاملHistological and histometrical studies on the Effects of Fluoride on the Femur in Rats
Background: Fluoride (F&minus) is a trace element that is incorporated into bone mineral during bone formation. This study assessed the effect of increasing Fluoride doses on the bone formation and microarchitecture on the Femur of rats by histological, and histometrical methods. Materials and Methods: A total of 16 rats was divided into one group of control and three groups of animals that re...
متن کاملAssociation between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy.
INTRODUCTION Trace elements are known to influence bone metabolism; however, their effects may be exacerbated in renal failure because dialysis patients are unable to excrete excess elements properly. Our study correlated bone quality in dialysis patients with levels of bone fluoride, magnesium, and aluminum. A number of studies have linked trace elements, including fluoride, magnesium, and alu...
متن کاملVitamin D and gene networks in human osteoblasts
Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3) through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR) is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-...
متن کاملFluoride and Alkaline Phosphatase
Since serum alkaline phosphatase increases in fluoride therapy for osteoporosis, it is generally accepted that fluoride stimulates bone formation. However, histochemical studies have shown that alkaline phosphatase is also increased in resorbing osteocytes. Fluoride is toxic to metabolically active bone cells, alkaline phosphatase is released, and serum alkaline phosphatase increases. We propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2008